GA
 LC
 U
 U©
 $12 e$

Index of Applications

Engineering and Physical Sciences

Acceleration, 128, 132, 160, 162, 180, 257, 910
Air pressure, 440
Air traffic control, 158, 750, 854
Aircraft glide path, 197
Angle of elevation, 155, 159, 160
Angular rate of change, 381
Angular speed, 38, 381
Apparent temperature, 903
Archimedes' Principle, 514
Architecture, 698
Asteroid Apollo, 742
Atmospheric pressure and altitude, 323, 349, 955
Automobile aerodynamics, 30
Average speed, 44, 93
Average temperature, 988, 1039
Average velocity, 116
Beam deflection, 697
Beam strength, 226
Boyle's Law, 493, 512
Braking load, 778
Breaking strength of a steel cable, 360
Bridge design, 698
Building design, 453, 571, 1012, 1040, 1068
Cable tension, 761, 769
Carbon dating, 421
Center of mass, 504
Centripetal acceleration, 854
Centripetal force, 854
Centroid, 502, 503, 527
Charles's Law, 78
Chemical mixture problem, 435, 437
Chemical reaction, 430, 558, 967
Circular motion, 844, 852
Comet Hale-Bopp, 745
Construction, 158, 769
Cooling superconducting magnets with liquid helium, 78
Cycloidal motion, 844, 853
Dissolving chlorine, 85
Doppler effect, 142
Einstein's Special Theory of Relativity and Newton's First Law of Motion, 207
Electric circuit, 371, 414, 434, 437
Electric force, 492
Electric force fields, 1045
Electric potential, 882
Electrical resistance, 189, 910
Electricity, 159, 307
Electromagnetic theory, 581
Electronically controlled thermostat, 29
Emptying a tank of oil, 489
Engine design, 1067
Engine efficiency, 207
Escape velocity, 98, 257

Explorer 1, 698
Explorer 18, 745
Explorer 55, 698
Falling object, 312, 434, 437
Ferris wheel, 870
Field strength, 548
Flight control, 159
Flow rate, 290, 294, 307, 351, 1109
Fluid force, 506, 507, 508, 509, 510, 513, 514, 546, 549
Force, 293, 509, 774, 775, 785, 786
Free-falling object, 72, 96
Frictional force, 862, 866
Fuel efficiency, 581
Gauss's Law, 1107, 1109
Geography, 807, 817
Gravitational fields, 1045
Gravitational force, 581
Halley's Comet, 698, 741
Hanging power cables, 393, 397
Harmonic motion, 142, 163, 349
Heat equation, 901
Heat flux, 1128
Heat transfer, 332
Heat-seeking particle, 925, 930
Height
of a Ferris wheel, 40
of a man, 581
rate of change of, 157
Highway design, 173, 197, 870
Honeycomb, 173
Hooke's Law, 487, 491, 512
Hydraulics, 1005
Hyperbolic detection system, 695
Hyperbolic mirror, 699
Ideal Gas Law, 883, 903, 918
Illumination, 226, 246
Inductance, 910
Kepler's Laws, 741, 742, 866
Kinetic and potential energy, 1075, 1078
Law of Conservation of Energy, 1075
Length
of a cable, 477, 481
of Gateway Arch, 482
of pursuit, 484
of a stream, 483
of warblers, 585
Linear vs. angular speed, 160, 163
Load supports, 769
Lunar gravity, 257
Machine design, 159
Machine part, 471
Magnetic field of Earth, 1054
Mass, 1059, 1065, 1066
on the surface of Earth, 494
Mechanical design, 453, 797
Meteorology, 883
Motion
of a liquid, 1122, 1123, 1127
of a spring, 531
Moving ladder, 93, 158

Moving shadow, 159, 160, 162, 163
Muzzle velocity, 761
Navigation, 699, 761
Newton's Law of Cooling, 419, 422
Newton's Law of Gravitation, 1045
Newton's Law of Universal Gravitation, 487, 492, 854
Oblateness of Saturn, 473
Ohm's Law, 241
Oil leak, 294
Orbit
of Earth, 698
of the moon, 690
of a satellite, 698, 731, 870
Orbital speed, 854
Parabolic reflector, 688
Particle motion, 132, 291, 294, 295, 698, 717, 827, 835, 837, 844, 853, 854, 865
Path
of a ball, 706, 842
of a baseball, 709, 841, 842, 843, 864
of a football, 843
of a projectile, 186, 716, 842, 843
of a shot, 843
Pendulum, 142, 241, 910
Planetary motion, 745
Planetary orbits, 691
Power, 173, 910
Producing a machine part, 463
Projectile motion, 164, 241, 679, 709, $761,840,842,843,851,853,854$, 864, 868, 870, 917
Psychrometer, 844
Radioactive decay, 352, 417, 421, 430, 440
Rectilinear motion, 257
Refraction of light, 963
Resultant force, 758, 760, 761
Resultant velocity, 758
Ripples in a pond, 29, 153
Rotary engine, 747
Satellite antenna, 747
Satellites, 131
Sending a space module into orbit, 488, 575
Solar collector, 697
Sound intensity, 323, 422
Specific gravity of water, 198
Speed of sound, 286
Surveying, 241, 565
Suspension bridge, 484
Temperature, 18, 180, 208, 322, 340, 413, 963
normal daily maximum in Chicago, 142
at which water boils, 323
Temperature distribution, 882, 902, 925, 930, 968
Theory of Relativity, 93
Topography, 875, 929, 930

DERIVATIVES AND INTEGRALS

Basic Differentiation Rules

1. $\frac{d}{d x}[c u]=c u^{\prime}$
2. $\frac{d}{d x}[u \pm v]=u^{\prime} \pm v^{\prime}$
3. $\frac{d}{d x}[u v]=u v^{\prime}+v u^{\prime}$
4. $\frac{d}{d x}\left[\frac{u}{v}\right]=\frac{v u^{\prime}-u v^{\prime}}{v^{2}}$
5. $\frac{d}{d x}[c]=0$
6. $\frac{d}{d x}\left[u^{n}\right]=n u^{n-1} u^{\prime}$
7. $\frac{d}{d x}[x]=1$
8. $\frac{d}{d x}[|u|]=\frac{u}{|u|}\left(u^{\prime}\right), \quad u \neq 0$
9. $\frac{d}{d x}[\ln u]=\frac{u^{\prime}}{u}$
10. $\frac{d}{d x}\left[e^{u}\right]=e^{u} u^{\prime}$
11. $\frac{d}{d x}\left[\log _{a} u\right]=\frac{u^{\prime}}{(\ln a) u}$
12. $\frac{d}{d x}\left[a^{u}\right]=(\ln a) a^{u} u^{\prime}$
13. $\frac{d}{d x}[\sin u]=(\cos u) u^{\prime}$
14. $\frac{d}{d x}[\cos u]=-(\sin u) u^{\prime}$
15. $\frac{d}{d x}[\tan u]=\left(\sec ^{2} u\right) u^{\prime}$
16. $\frac{d}{d x}[\cot u]=-\left(\csc ^{2} u\right) u^{\prime}$
17. $\frac{d}{d x}[\sec u]=(\sec u \tan u) u^{\prime}$
18. $\frac{d}{d x}[\csc u]=-(\csc u \cot u) u^{\prime}$
19. $\frac{d}{d x}[\arcsin u]=\frac{u^{\prime}}{\sqrt{1-u^{2}}}$
20. $\frac{d}{d x}[\arccos u]=\frac{-u^{\prime}}{\sqrt{1-u^{2}}}$
21. $\frac{d}{d x}[\arctan u]=\frac{u^{\prime}}{1+u^{2}}$
22. $\frac{d}{d x}[\operatorname{arccot} u]=\frac{-u^{\prime}}{1+u^{2}}$
23. $\frac{d}{d x}[\operatorname{arcsec} u]=\frac{u^{\prime}}{|u| \sqrt{u^{2}-1}}$
24. $\frac{d}{d x}[\operatorname{arccsc} u]=\frac{-u^{\prime}}{|u| \sqrt{u^{2}-1}}$
25. $\frac{d}{d x}[\sinh u]=(\cosh u) u^{\prime}$
26. $\frac{d}{d x}[\cosh u]=(\sinh u) u^{\prime}$
27. $\frac{d}{d x}[\tanh u]=\left(\operatorname{sech}^{2} u\right) u^{\prime}$
28. $\frac{d}{d x}[\operatorname{coth} u]=-\left(\operatorname{csch}^{2} u\right) u^{\prime}$
29. $\frac{d}{d x}[\operatorname{sech} u]=-(\operatorname{sech} u \tanh u) u^{\prime}$
30. $\frac{d}{d x}[\operatorname{csch} u]=-(\operatorname{csch} u \operatorname{coth} u) u^{\prime}$
31. $\frac{d}{d x}\left[\sinh ^{-1} u\right]=\frac{u^{\prime}}{\sqrt{u^{2}+1}}$
32. $\frac{d}{d x}\left[\cosh ^{-1} u\right]=\frac{u^{\prime}}{\sqrt{u^{2}-1}}$
33. $\frac{d}{d x}\left[\tanh ^{-1} u\right]=\frac{u^{\prime}}{1-u^{2}}$
34. $\frac{d}{d x}\left[\operatorname{coth}^{-1} u\right]=\frac{u^{\prime}}{1-u^{2}}$
35. $\frac{d}{d x}\left[\operatorname{sech}^{-1} u\right]=\frac{-u^{\prime}}{u \sqrt{1-u^{2}}}$
36. $\frac{d}{d x}\left[\operatorname{csch}^{-1} u\right]=\frac{-u^{\prime}}{|u| \sqrt{1+u^{2}}}$

Basic Integration Formulas

1. $\int k f(u) d u=k \int f(u) d u$
2. $\int[f(u) \pm g(u)] d u=\int f(u) d u \pm \int g(u) d u$
3. $\int d u=u+C$
4. $\int u^{n} d u=\frac{u^{n+1}}{n+1}+C, \quad n \neq-1$
5. $\int \frac{d u}{u}=\ln |u|+C$
6. $\int e^{u} d u=e^{u}+C$
7. $\int a^{u} d u=\left(\frac{1}{\ln a}\right) a^{u}+C$
8. $\int \sin u d u=-\cos u+C$
9. $\int \cos u d u=\sin u+C$
10. $\int \tan u d u=-\ln |\cos u|+C$
11. $\int \cot u d u=\ln |\sin u|+C$
12. $\int \sec u d u=\ln |\sec u+\tan u|+C$
13. $\int \csc u d u=-\ln |\csc u+\cot u|+C$
14. $\int \sec ^{2} u d u=\tan u+C$
15. $\int \csc ^{2} u d u=-\cot u+C$
16. $\int \sec u \tan u d u=\sec u+C$
17. $\int \csc u \cot u d u=-\csc u+C$
18. $\int \frac{d u}{\sqrt{a^{2}-u^{2}}}=\arcsin \frac{u}{a}+C$
19. $\int \frac{d u}{a^{2}+u^{2}}=\frac{1}{a} \arctan \frac{u}{a}+C$
20. $\int \frac{d u}{u \sqrt{u^{2}-a^{2}}}=\frac{1}{a} \operatorname{arcsec} \frac{|u|}{a}+C$

TRIGONOMETRY

Definition of the Six Trigonometric Functions

Right triangle definitions, where $0<\theta<\pi / 2$.

$\sin \theta=\frac{\text { opp }}{\text { hyp }} \quad \csc \theta=\frac{\text { hyp }}{\text { opp }}$
$\cos \theta=\frac{\text { adj }}{\text { hyp }} \quad \sec \theta=\frac{\text { hyp }}{\text { adj }}$
$\tan \theta=\frac{\text { opp }}{\text { adj }} \quad \cot \theta=\frac{\text { adj }}{\text { opp }}$
Circular function definitions, where θ is any angle.

$$
\begin{aligned}
& \sin \theta=\frac{y}{r} \quad \csc \theta=\frac{r}{y} \\
& \cos \theta=\frac{x}{r} \quad \sec \theta=\frac{r}{x} \\
& \tan \theta=\frac{y}{x} \quad \cot \theta=\frac{x}{y}
\end{aligned}
$$

Reciprocal Identities

$\sin x=\frac{1}{\csc x} \quad \cos x=\frac{1}{\sec x} \quad \tan x=\frac{1}{\cot x}$
$\csc x=\frac{1}{\sin x} \quad \sec x=\frac{1}{\cos x} \quad \cot x=\frac{1}{\tan x}$

Quotient Identities

$\tan x=\frac{\sin x}{\cos x} \quad \cot x=\frac{\cos x}{\sin x}$

Pythagorean Identities

$\sin ^{2} x+\cos ^{2} x=1$
$1+\tan ^{2} x=\sec ^{2} x \quad 1+\cot ^{2} x=\csc ^{2} x$

Cofunction Identities

$\sin \left(\frac{\pi}{2}-x\right)=\cos x \quad \cos \left(\frac{\pi}{2}-x\right)=\sin x$
$\csc \left(\frac{\pi}{2}-x\right)=\sec x \quad \tan \left(\frac{\pi}{2}-x\right)=\cot x$
$\sec \left(\frac{\pi}{2}-x\right)=\csc x \quad \cot \left(\frac{\pi}{2}-x\right)=\tan x$

Even/Odd Identities

$\sin (-x)=-\sin x \quad \cos (-x)=\cos x$
$\csc (-x)=-\csc x \quad \tan (-x)=-\tan x$
$\sec (-x)=\sec x \quad \cot (-x)=-\cot x$

Sum and Difference Formulas

$\sin (u \pm v)=\sin u \cos v \pm \cos u \sin v$
$\cos (u \pm v)=\cos u \cos v \mp \sin u \sin v$
$\tan (u \pm v)=\frac{\tan u \pm \tan v}{1 \mp \tan u \tan v}$

Double-Angle Formulas

$\sin 2 u=2 \sin u \cos u$
$\cos 2 u=\cos ^{2} u-\sin ^{2} u=2 \cos ^{2} u-1=1-2 \sin ^{2} u$
$\tan 2 u=\frac{2 \tan u}{1-\tan ^{2} u}$
Power-Reducing Formulas
$\sin ^{2} u=\frac{1-\cos 2 u}{2}$
$\cos ^{2} u=\frac{1+\cos 2 u}{2}$
$\tan ^{2} u=\frac{1-\cos 2 u}{1+\cos 2 u}$

Sum-to-Product Formulas

$\sin u+\sin v=2 \sin \left(\frac{u+v}{2}\right) \cos \left(\frac{u-v}{2}\right)$
$\sin u-\sin v=2 \cos \left(\frac{u+v}{2}\right) \sin \left(\frac{u-v}{2}\right)$
$\cos u+\cos v=2 \cos \left(\frac{u+v}{2}\right) \cos \left(\frac{u-v}{2}\right)$
$\cos u-\cos v=-2 \sin \left(\frac{u+v}{2}\right) \sin \left(\frac{u-v}{2}\right)$

Product-to-Sum Formulas

$\sin u \sin v=\frac{1}{2}[\cos (u-v)-\cos (u+v)]$
$\cos u \cos v=\frac{1}{2}[\cos (u-v)+\cos (u+v)]$
$\sin u \cos v=\frac{1}{2}[\sin (u+v)+\sin (u-v)]$
$\cos u \sin v=\frac{1}{2}[\sin (u+v)-\sin (u-v)]$

cALCULUS with LalcChat ${ }^{\text {and }}$ LAlcVIEW ${ }^{\text {® }}$
 12e

Ron Larson

The Pennsylvania State University
The Behrend College

Bruce Edwards

University of Florida

This is an electronic version of the print textbook. Due to electronic rights restrictions, some third party content may be suppressed. Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. The publisher reserves the right to remove content from this title at any time if subsequent rights restrictions require it. For valuable information on pricing, previous editions, changes to current editions, and alternate formats, please visit www.cengage.com/highered to search by ISBN\#, author, title, or keyword for materials in your areas of interest.

Important Notice: Media content referenced within the product description or the product text may not be available in the eBook version.

Calculus

with CalcChat ${ }^{\circledR}$ and CalcView ${ }^{\circledR}$
Twelfth Edition
Ron Larson
Bruce Edwards
SVP, Higher Education Product Management: Erin Joyner VP, Product Management, Learning Experiences: Thais Alencar Product Director: Mark Santee

Senior Product Manager: Gary Whalen
Senior Product Assistant: Tim Rogers
Senior Learning Designer: Laura Gallus
Content Manager: Rachel Pancare
Manufacturing Planner: Ron Montgomery
Digital Delivery Quality Partner: Nikkita Kendrick
Director, Product Marketing: Jennifer Fink
Executive Marketing Manager: Tom Ziolkowski
IP Analyst: Ashley Maynard
IP Project Manager: Nick Barrows
Production Service: Larson Texts, Inc.
Compositor: Larson Texts, Inc.
Text and Cover Designer: Larson Texts, Inc.
Illustrator: Larson Texts, Inc.
Cover Image Source: Philipp Tur/Shutterstock.com
© 2023, 2018, 2014 Cengage Learning, Inc. ALL RIGHTS RESERVED.
WCN: 02-300
No part of this work covered by the copyright herein may be reproduced or distributed in any form or by any means, except as permitted by U.S. copyright law, without the prior written permission of the copyright owner.

Unless otherwise noted, all content is © Cengage.

For product information and technology assistance, contact us at Cengage Customer \& Sales Support, 1-800-354-9706 or support.cengage.com.
For permission to use material from this text or product, submit all requests online at www.copyright.com.

Library of Congress Control Number: 2021943658
Student Edition
ISBN: 978-o-357-74913-5

Loose-leaf Edition
ISBN: 978-0-357-74916-6

Cengage

200 Pier 4 Boulevard
Boston, MA 02210
USA
Cengage is a leading provider of customized learning solutions with employees residing in nearly 40 different countries and sales in more than 125 countries around the world. Find your local representative at www.cengage.com.

To learn more about Cengage platforms and services, register or access your online learning solution, or purchase materials for your course, visit www.cengage.com.

Printed in the United States of America
Print Number: 01 Print Year: 2022
P Preparation for Calculus 1
P. 1 Graphs and Models 2
P. 2 Linear Models and Rates of Change 10
P. 3 Functions and Their Graphs 19
P. 4 Review of Trigonometric Functions 31
Review Exercises 41
P.S. Problem Solving 44
1 Limits and Their Properties 45
1.1 A Preview of Calculus 46
1.2 Finding Limits Graphically and Numerically 52
1.3 Evaluating Limits Analytically 63
1.4 Continuity and One-Sided Limits 74
1.5 Infinite Limits 87
Section Project: Graphs and Limits of Trigonometric Functions 94
Review Exercises 95
P.S. Problem Solving 98
2 Differentiation 99
2.1 The Derivative and the Tangent Line Problem 100
2.2 Basic Differentiation Rules and Rates of Change 110
2.3 Product and Quotient Rules and Higher-Order Derivatives 122
2.4 The Chain Rule 133
2.5 Implicit Differentiation 144
Section Project: Optical Illusions 151
2.6 Related Rates 152
Review Exercises 161
P.S. Problem Solving 164
3 Applications of Differentiation 1653.1 Extrema on an Interval 166
3.2 Rolle's Theorem and the Mean Value Theorem 174
3.3 Increasing and Decreasing Functions and the First Derivative Test 181
Section Project: Even Polynomial Functions of Fourth Degree 190
3.4 Concavity and the Second Derivative Test 191
3.5 Limits at Infinity 199
3.6 A Summary of Curve Sketching 209
3.7 Optimization Problems 219
Section Project: Minimum Time 228
3.8 Newton's Method 229
3.9 Differentials 235
Review Exercises 242
P.S. Problem Solving 246
4 Integration 247
4.1 Antiderivatives and Indefinite Integration 248
4.2 Area 258
4.3 Riemann Sums and Definite Integrals 270
4.4 The Fundamental Theorem of Calculus 281
4.5 Integration by Substitution 296
Section Project: Probability 308
Review Exercises 309
P.S. Problem Solving 312
5 Logarithmic, Exponential, and Other Transcendental Functions 313
5.1 The Natural Logarithmic Function: Differentiation 314
5.2 The Natural Logarithmic Function: Integration 324
5.3 Inverse Functions 333
5.4 Exponential Functions: Differentiation and Integration 342
5.5 Bases Other than e and Applications 352
Section Project: Using a Graphing Utility to Estimate Slope 361
5.6 Indeterminate Forms and L'Hôpital's Rule 362
5.7 Inverse Trigonometric Functions: Differentiation 373
5.8 Inverse Trigonometric Functions: Integration 382
5.9 Hyperbolic Functions 390
Section Project: Mercator Map 399
Review Exercises 400
P.S. Problem Solving 404
6 Differential Equations 405
6.1 Slope Fields and Euler's Method 406
6.2 Growth and Decay 415
6.3 Separation of Variables and the Logistic Equation 423
6.4 First-Order Linear Differential Equations 432
Section Project: Weight Loss 438
Review Exercises 439
P.S. Problem Solving 442
7 Applications of Integration 443
7.1 Area of a Region Between Two Curves 444
7.2 Volume: The Disk Method 454
7.3 Volume: The Shell Method 465
Section Project: Saturn 473
7.4 Arc Length and Surfaces of Revolution 474
7.5 Work 485
Section Project: Pyramid of Khufu 493
7.6 Moments, Centers of Mass, and Centroids 494
7.7 Fluid Pressure and Fluid Force 505
Review Exercises 511
P.S. Problem Solving 514
8 Integration Techniques and Improper Integrals 515
8.1 Basic Integration Rules 516
8.2 Integration by Parts 523
8.3 Trigonometric Integrals 532
Section Project: The Wallis Product 540
8.4 Trigonometric Substitution 541
8.5 Partial Fractions 550
8.6 Numerical Integration 559
8.7 Integration by Tables and Other Integration Techniques 566
8.8 Improper Integrals 572
Review Exercises 583
P.S. Problem Solving 586
9 Infinite Series 587
9.1 Sequences 588
9.2 Series and Convergence 599
Section Project: Cantor's Disappearing Table 608
9.3 The Integral Test and p-Series 609
Section Project: The Harmonic Series 615
9.4 Comparisons of Series 616
9.5 Alternating Series 623
9.6 The Ratio and Root Tests 631
9.7 Taylor Polynomials and Approximations 640
9.8 Power Series 651
9.9 Representation of Functions by Power Series 661
9.10 Taylor and Maclaurin Series 668
Review Exercises 680
P.S. Problem Solving 684
10 Conics, Parametric Equations, and Polar Coordinates 685
10.1 Conics and Calculus 686
10.2 Plane Curves and Parametric Equations 700
Section Project: Cycloids 709
10.3 Parametric Equations and Calculus 710
10.4 Polar Coordinates and Polar Graphs 719
Section Project: Cassini Oval 728
10.5 Area and Arc Length in Polar Coordinates 729
10.6 Polar Equations of Conics and Kepler's Laws 738
Review Exercises 746
P.S. Problem Solving 750
11 Vectors and the Geometry of Space 751
11.1 Vectors in the Plane 752
11.2 Space Coordinates and Vectors in Space 762
11.3 The Dot Product of Two Vectors 770
11.4 The Cross Product of Two Vectors in Space 779
11.5 Lines and Planes in Space 787
Section Project: Distances in Space 797
11.6 Surfaces in Space 798
11.7 Cylindrical and Spherical Coordinates 808
Review Exercises 815
P.S. Problem Solving 818
12 Vector-Valued Functions 819
12.1 Vector-Valued Functions 820
Section Project: Witch of Agnesi 827
12.2 Differentiation and Integration of Vector-Valued Functions 828
12.3 Velocity and Acceleration 836
12.4 Tangent Vectors and Normal Vectors 845
12.5 Arc Length and Curvature 855
Review Exercises 867
P.S. Problem Solving 870
13 Functions of Several Variables 871
13.1 Introduction to Functions of Several Variables 872
13.2 Limits and Continuity 884
13.3 Partial Derivatives 894
13.4 Differentials 904
13.5 Chain Rules for Functions of Several Variables 911
13.6 Directional Derivatives and Gradients 919
13.7 Tangent Planes and Normal Lines 931
Section Project: Wildflowers 939
13.8 Extrema of Functions of Two Variables 940
13.9 Applications of Extrema 948
Section Project: Building a Pipeline 955
13.10 Lagrange Multipliers 956
Review Exercises 964
P.S. Problem Solving 968
14 Multiple Integration 969
14.1 Iterated Integrals and Area in the Plane 970
14.2 Double Integrals and Volume 978
14.3 Change of Variables: Polar Coordinates 990
14.4 Center of Mass and Moments of Inertia 998
Section Project: Center of Pressure on a Sail 1005
14.5 Surface Area 1006
Section Project: Surface Area in Polar Coordinates 1012
14.6 Triple Integrals and Applications 1013
14.7 Triple Integrals in Other Coordinates 1024
Section Project: Wrinkled and Bumpy Spheres 1030
14.8 Change of Variables: Jacobians 1031
Review Exercises 1038
P.S. Problem Solving 1042
15 Vector Analysis 1043
15.1 Vector Fields 1044
15.2 Line Integrals 1055
15.3 Conservative Vector Fields and Independence of Path 1069
15.4 Green's Theorem 1079
Section Project: Hyperbolic and Trigonometric Functions 1087
15.5 Parametric Surfaces 1088
15.6 Surface Integrals 1098
Section Project: Hyperboloid of One Sheet 1109
15.7 Divergence Theorem 1110
15.8 Stokes's Theorem 1118
Review Exercises 1124
P.S. Problem Solving 1128
16 Additional Topics in Differential Equations (Online)*
16.1 Exact First-Order Equations
16.2 Second-Order Homogeneous Linear Equations
16.3 Second-Order Nonhomogeneous Linear Equations Section Project: Parachute Jump
16.4 Series Solutions of Differential Equations Review Exercises
P.S. Problem Solving
Appendices
Appendix A: Proofs of Selected Theorems A2
Appendix B: Integration Tables A3
Appendix C: Precalculus Review (Online)*
Appendix D: Rotation and the General Second-DegreeEquation (Online)*
Appendix E: Complex Numbers (Online)*
Appendix F: Business and Economic Applications (Online)*Appendix G: Fitting Models to Data (Online)*
Answers to All Odd-Numbered Exercises A7
Index A123
*Available at the text companion website LarsonCalculus.com

Welcome to Calculus with CalcChat ${ }^{\circledR}$ and CalcView ${ }^{\circledR}$, Twelfth Edition. We are excited to offer you a new edition with more resources then ever that will help you understand and master calculus. This text includes features and resources that continue to make Calculus a valuable learning tool for students and a trustworthy teaching tool for instructors.

Calculus provides the clear instruction, precise mathematics, and thorough coverage that you expect for your course. Additionally, this new edition provides you with free access to a variety of digital resources.

- GO DIGITAL-direct access to digital content on your mobile device or computer
- CalcView.com—video solutions to selected exercises
- CalcChat.com-worked-out solutions to odd-numbered exercises and access to online tutors
- LarsonCalculus.com-companion website with resources to supplement your learning

These digital resources will help enhance and reinforce your understanding of the material presented in this text and prepare you for future mathematics courses. CalcView ${ }^{\circledR}$ and CalcChat ${ }^{\circledR}$ are also available as free mobile apps.

Features

NEW GO DIGITAL

 device. This will give you easy access to

- instructional and proof videos,
- interactive examples,
- solutions to exercises,
- free online tutoring,
and many other resources.

UPDATED 兰 LalcView ${ }^{\circ}$

The website CalcView.com provides video solutions of selected exercises. Watch instructors progress step-by-step through solutions, providing guidance to help you solve the exercises. The CalcView mobile app is available for free at the Apple ${ }^{\circledR}$ App Store ${ }^{\circledR}$ or Google Play ${ }^{\text {TM }}$ store. You can access the
 the CalcView.com website.

UPDATED \equiv (GalcChat ${ }^{\circ}$

Solutions to all odd-numbered exercises are provided for free at CalcChat.com. Additionally, you can chat with a tutor, at no charge, during the hours posted at the site. For over 20 years, millions of students have visited our site for help! The CalcChat mobile app is also available as a free download at the Apple ${ }^{\circledR}$ App Store ${ }^{\circledR}$ or Google Play ${ }^{\mathrm{TM}}$ store.

UPDATED LarsonCalculus.com

All companion website features have been updated based on this revision. Watch videos explaining concepts or proofs from the text, explore examples, view three-dimensional graphs, download articles from math journals, and much more.

[^0]
NEW Big Ideas of Calculus

We have added a new feature to help you discover and understand the Big Ideas of Calculus. This feature, which is denoted by 3 , has four parts.

- The Big Ideas of Calculus notes give you an overview of the major concepts of a chapter and how they relate to the earlier concepts you have studied. These notes appear near the beginning of a chapter and in the chapter review.
- In each section and in the chapter review, make sure you do the Concept Check exercises and the Exploring Concepts exercises. These exercises will help you develop a deeper and clearer knowledge of calculus. Work through these exercises to build and strengthen your understanding of the concepts.
- To continue exploring calculus, do the Building on Concepts exercises at the end

Big Ideas of Calculus
In this chapter, you will study integration. Integration, like differentiation, is a major theme of calculus. Interestingly, as you will learn in the Fundamental Theorem of Calculus, these two major themes have an inverse relationship. As part of your study of integration, you will examine the areas of plane regions. of the chapter review. Not only will these exercises help you expand your knowledge and use of calculus, they will prepare you to learn concepts in later chapters.

Building on Concepts

Concept Check

1. Explain what it means for a function F to be an antiderivative of a fanction f on an interval t.
2. Can two different functions both be antideri"? yes of the same function? Explain.
3. Explain how to find a particular solution of equation.
4. Describe the difference between the general sy particular solution of a differential equation.

Exploring Concepts

In Exercises 49 and 50, the graph of the derivative of a function is given. Sketch the gruphs of fso functions that have the given derivative. (There is more than one correct answer.) To print an enlarged copy of the graph, go to MethGirephecoan.

75. Consider the function
$F(x)=\int_{0}^{x} \sin ^{2} t d t$.
(a) Evaluate F at $x=0, \pi / 6, \pi / 3, \pi / 2,2 \pi / 3,5 \pi / 6$, and π. Are the values of f increasing or decreasing? Explain.
(b) Use the integration capabilities of a graphing utility to graph F and $y_{1}=\sin ^{2} t$ oe the interval $0 \leq t \leq \pi$.
(c) Use the differentiation capabilities of a graphing utility to graph F. How is this graph related to the graph in part (b)?
(d) Verify that $\sin ^{2} t$ is the derivative of

$$
y=\frac{1}{2} t-\frac{1}{4} \sin 2 t
$$

Graph y and write a short paragraph about how this graph is related to those in parts (b) and (c).

UPDATED Exercise Sets

The exercise sets have been carefully and extensively examined to ensure they are rigorous and relevant and to include topics our users have suggested. The exercises are organized and titled so you can better see the connections between examples and exercises. Multi-step, real-life exercises reinforce problem-solving skills and mastery of concepts by giving you the opportunity to apply the concepts in real-life situations.

Section Projects

Projects appear in selected sections and encourage you to explore applications related to the topics you are studying. All of these projects provide an interesting and engaging way for you and other students to work and investigate ideas collaboratively.

UPDATED Chapter Opener

Each Chapter Opener highlights real-life applications used in the examples and exercises. For this edition, we also highlight the online resources at CalcView.com and CalcChat.com.

SECTION PROJECT

Graphs and Limits of Trigonometric Functions

Recall from Theorem 1.9 that the limit of

$$
f(x)=\frac{\sin x}{x}
$$

as x approaches 0 is 1 .
(a) Use a graphing utility to graph the function f on the interval $-\pi \leq x \leq \pi$. Explain how the graph helps confirm this theorem.
(b) Explain how you could use a table of values to confirm the value of this limit numerically.
(c) Graph $g(x)=\sin x$ by hand. Sketch a tangent line at the point $(0,0)$ and visually estimate the slope of this tangent line.
(d) Let $(x, \sin x)$ be a point on the graph of g near $(0,0)$, and write a formula for the slope of the secant line joining $(x, \sin x)$ and $(0,0)$. Evaluate this formula at $x=0.1$ and $x=0.01$. Then find the exact slope of the tangent line to g at the point $(0,0)$.
(e) Sketch the graph of the cosine function $h(x)=\cos x$. What is the slope of the tangent line at the point $(0,1)$? Use limits to find this slope analytically.
(f) Find the slope of the tangent line to $k(x)=\tan x$ at $(0,0)$.

Section Objectives

A bulleted list of learning objectives provides you with the opportunity to preview what will be presented in the upcoming section.

Theorems

Theorems provide the conceptual framework for calculus. Theorems are clearly stated and separated from the rest of the text by boxes for quick visual reference. Key proofs often follow the theorem and can be found at LarsonCalculus.com.

Definitions

As with theorems, definitions are clearly stated using precise, formal wording and are separated from the text by boxes for quick visual reference.

Explorations

Explorations provide unique challenges to study concepts that have not yet been formally covered in the text. They allow you to learn by discovery and introduce topics related to ones presently being studied. Exploring topics in this way encourages you to think outside the box.

UPDATED Remarks

These hints and tips reinforce or expand upon concepts, help you learn how to study mathematics, caution you about common errors, address special cases, or show an alternative solution to an example. We have added several new Remarks to help students who need more in-depth algebra support.

UPDATED Historical Notes and Biographies

Historical Notes provide you with background information on the foundations of calculus.
The Biographies introduce you to the people who created and contributed to calculus.
We have added several new biographies, and more biographies are available at LarsonCalculus.com.

Technology

Throughout the book, technology boxes show you how to use technology to solve problems and explore concepts of calculus. These tips also point out some pitfalls of using technology.

How Do You See It? Exercise

The How Do You See It? exercise in each section presents a problem that you will solve by visual inspection using the concepts learned in the lesson.

UPDATED Applications

Carefully chosen applied exercises and examples are included throughout to address the question, "When will I use this?" These applications are pulled from diverse sources, such as current events, world data, industry trends, and more, and relate to a wide range of interests. Understanding where calculus is (or can be) used promotes fuller understanding of the material.

Putnam Exam Challenges

Putnam Exam questions appear in selected sections. These actual Putnam Exam questions will challenge you and push the limits of your understanding of calculus.

: CENGAGE | WEBASSIGN

Prepare for class with confidence using WebAssign from Cengage. This online learning platform, which includes an interactive eBook, fuels practice so that you truly absorb what you learn and prepare better for tests. Videos and tutorials walk you through concepts and deliver instant feedback and grading, so you always know where you stand in class. Focus your study time and get extra practice where you need it most. Study smarter with WebAssign! Ask your instructor today how you can get access to WebAssign, or learn about self-study options at cengage.com/webassign.

Student Solutions Manual

Student Solutions Manual for Calculus of a Single Variable, 12e
(ISBN-13: 978-0-357-74919-7)
Student Solutions Manual for Multivariable Calculus, 12e
(ISBN-13: 978-0-357-74920-3)
These manuals provide step-by-step solutions for all odd-numbered exercises, including Review Exercises and P.S. Problem Solving. The manual for Calculus of a Single Variable contains solutions for Chapters P-10, and the manual for Multivariable Calculus contains solutions for Chapters 11-16.

Cengage.com

Additional student resources for this product are available online. Sign up or sign in at cengage.com to search for and access this product and its online resources.

LarsonCalculus.com

Of the many features at this website, students have told us that the videos are the most helpful. Watch instructional videos presented by Dana Mosely, as he explains various calculus concepts. Watch proof videos presented by Bruce Edwards, as he explains various calculus theorems and their proofs. Other helpful features are the data downloads (editable spreadsheets so you do not have to enter the data), algebra help videos, interactive examples, and much more. You can access these features

CalcChat.com

This website provides free step-by-step solutions to all odd-numbered exercises and tests. Additionally, you can chat with a tutor, at no charge, during the hours posted at the site. You can access the solutions by going to CalcChat.com or by scanning the

CalcView.com

This website has free video solutions of selected exercises. Watch instructors progress step-by-step through solutions, providing guidance to help you solve the exercises. You can access the videos by going to CalcView.com or by scanning the on-page code 橰緼 on the first page of the section exercises.

MathGraphs.com

For exercises that ask you to draw on the graph, we have provided free, printable graphs at MathGraphs.com. You can access the printable graphs by
 of any exercise set.

: CENGAGE \| WEBASSIGN

Built by educators, WebAssign from Cengage is a fully customizable online solution for STEM disciplines. WebAssign includes the flexibility, tools, and content you need to create engaging learning experiences for your students. The patented grading engine provides unparalleled answer evaluation, giving students instant feedback, and insightful analytics highlight exactly where students are struggling. For more information, visit cengage.com/webassign.

Cengage.com

Additional instructor resources for this product are available online. Instructor assets include an Instructor's Manual, Educator’s Guide, PowerPoint ${ }^{\circledR}$ slides, a Solution and Answer Guide, and a test bank powered by Cognero ${ }^{\circledR}$. Sign up or sign in at cengage.com to search for and access this product and its online resources. The Cengage Instructor Center is an all-in-one resource for class preparation, presentation, and testing. The instructor resources available for download include:
Instructor's Manual Includes activities and assessments correlated by learning objectives, chapter and section outline, key formulas and terms with definitions, ideas for student collaboration and class discussions, and more.
Solution and Answer Guide Provides answers and solutions to all exercises, including Review Exercises, P.S. Problem Solving, and Putnam Exam Challenge.
Cengage Testing Powered by Cognero ${ }^{(1)}$ A flexible online system that allows you to author, edit, and manage test bank content online. You can create multiple tests in an instant and deliver them from your LMS, or export to printable PDF or Word format for in-class assessment.
PowerPoint ${ }^{\circledR}$ Slides The PowerPoint ${ }^{\circledR}$ slides are ready-to-use, visual outlines of each section that can be easily customized for your lectures. Presentations include activities, examples, and ample opportunities for student engagement and interaction.
Transition Guide Highlights the content changes from the previous edition to the new edition, including exercise correlations.
Guide to Online Teaching Provides technological and pedagogical considerations and tips for teaching a calculus course online.
Educator's Guide Offers suggested content and activities for Cengage WebAssign -like videos and assignments-that you can integrate into your course to help boost engagement and outcomes.

LarsonCalculus.com

In addition to its student resources, LarsonCalculus.com also has resources to help instructors. For students who need algebra help, we have provided instructional videos to explain various algebra and precalculus concepts. Students can assess their knowledge of these concepts through self-grading progress checks. You can also give your students experience using an online graphing utility with the Interactive Examples. You can access these features by going to LarsonCalculus.com

MathArticles.com

This text contains over 50 references to articles from mathematics journals noted in the For Further Information feature. To make the articles easily accessible to instructors and students, they are available at MathArticles.com or by scanning the on-page code 顛纙.

We would like to thank the many people who have helped us at various stages of Calculus over the last 48 years. Their encouragement, criticisms, and suggestions have been invaluable.

Reviewers

Stan Adamski, Owens Community College; Tilak de Alwis; Darry Andrews; Alexander Arhangelskii, Ohio University; Seth G. Armstrong, Southern Utah University; Jim Ball, Indiana State University; Denis Bell, University of Northern Florida; Marcelle Bessman, Jacksonville University; Abraham Biggs, Broward Community College; Jesse Blosser, Eastern Mennonite School; Linda A. Bolte, Eastern Washington University; James Braselton, Georgia Southern University; Harvey Braverman, Middlesex County College; Mark Brittenham, University of Nebraska; Tim Chappell, Penn Valley Community College; Fan Chen, El Paso Community College; Mingxiang Chen, North Carolina A\&T State University; Oiyin Pauline Chow, Harrisburg Area Community College; Julie M. Clark, Hollins University; P.S. Crooke, Vanderbilt University; Jim Dotzler, Nassau Community College; Murray Eisenberg, University of Massachusetts at Amherst; Donna Flint, South Dakota State University; Michael Frantz, University of La Verne; David French, Tidewater Community College; Sudhir Goel, Valdosta State University; Arek Goetz, San Francisco State University; Donna J. Gorton, Butler County Community College; John Gosselin, University of Georgia; Arran Hamm; Shahryar Heydari, Piedmont College; Guy Hogan, Norfolk State University; Dr. Enayat Kalantarian, El Paso Community College; Marcia Kleinz, Atlantic Cape Community College; Ashok Kumar, Valdosta State University; Kevin J. Leith, Albuquerque Community College; Maxine Lifshitz, Friends Academy; Douglas B. Meade, University of South Carolina; Bill Meisel, Florida State College at Jacksonville; Shahrooz Moosavizadeh; Teri Murphy, University of Oklahoma; Darren Narayan, Rochester Institute of Technology; Susan A. Natale, The Ursuline School, NY; Martha Nega, Georgia Perimeter College; Francis Nkansah, Bunker Hill Community College; Sam Pearsall, Los Angeles Pierce College; Terence H. Perciante, Wheaton College; James Pommersheim, Reed College; Laura Ritter, Southern Polytechnic State University; Carson Rogers, Boston College; Leland E. Rogers, Pepperdine University; Paul Seeburger, Monroe Community College; Edith A. Silver, Mercer County Community College; Howard Speier, Chandler-Gilbert Community College; Desmond Stephens, Florida A\&M University; Jianzhong Su, University of Texas at Arlington; James K. Vallade, Monroe County Community College; Patrick Ward, Illinois Central College; Chia-Lin Wu, Richard Stockton College of New Jersey; Diane M. Zych, Erie Community College

Many thanks to Robert Hostetler, The Behrend College, The Pennsylvania State University, and David Heyd, The Behrend College, The Pennsylvania State University, for their significant contributions to previous editions of this text.

We would also like to thank the staff at Larson Texts, Inc., who assisted in the production, composition, and illustration of the text and its supplements. Additionally, we are thankful for their help in developing and maintaining CalcChat.com, CalcView.com, LarsonCalculus.com, MathArticles.com, and MathGraphs.com.

On a personal level, we are grateful to our wives, Deanna Gilbert Larson and Consuelo Edwards, for their love, patience, and support. Also, a special note of thanks goes out to R. Scott O'Neil.

If you have suggestions for improving this text, please feel free to write to us. Over the years we have received many useful comments from both instructors and students, and we value these very much.

Ron Larson
Bruce Edwards

Copyright 2023 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-322

Preparation for Calculus

P. 1 Graphs and Models

P. 2 Linear Models and Rates of Change
P. 3 Functions and Their Graphs
P. 4 Review of Trigonometric Functions

官 Calchat ${ }^{\circ}$

P. 3 Automobile Aerodynamics (Exercise 101, p. 30)

P. 1 Modeling Carbon Dioxide Concentration (Example 6, p. 7)

P. 1 Graphs and Models

RENÉ DESCARTES (1596-1650)
Descartes made many contributions to philosophy, science, and mathematics. The idea of representing points in the plane by pairs of real numbers and representing curves in the plane by equations was described by Descartes in his book La Géométrie, published in 1637.
See LarsonCalculus.com to read more of this biography.

The parabola $y=x^{2}-2$
Figure P. 2
(1) Sketch the graph of an equation.
() Find the intercepts of a graph.
() Test a graph for symmetry with respect to an axis and the origin.
() Find the points of intersection of two graphs.
(3) Interpret mathematical models for real-life data.

The Graph of an Equation

In 1637, the French mathematician René Descartes revolutionized the study of mathematics by combining its two major fields-algebra and geometry. With Descartes's coordinate plane, geometric concepts could be formulated analytically and algebraic concepts could be viewed graphically. The power of this approach was such that within a century of its introduction, much of calculus had been developed.

The same approach can be followed in your study of calculus. That is, by viewing calculus from multiple perspectives-graphically, analytically, and numerically-you will increase your understanding of core concepts.

Consider the equation $3 x+y=7$. The point $(2,1)$ is a solution point of the equation because the equation is satisfied (is true) when 2 is substituted for x and 1 is substituted for y. This equation has many other solutions, such as $(1,4)$ and $(0,7)$. To find other solutions systematically, solve the original equation for y.

$$
y=7-3 x \quad \text { Analytic approach }
$$

Then construct a table of values by substituting several values of x.

x	0	1	2	3	4
y	7	4	1	-2	-5

Numerical approach

From the table, note that $(0,7),(1,4),(2,1),(3,-2)$, and $(4,-5)$ are solutions of the original equation $3 x+y=7$. Like many equations, this equation has an infinite number of solutions. The set of all solution points is the graph of the equation, as shown in Figure P.1. Note that the sketch shown in Figure P. 1 is referred to as the graph of $3 x+y=7$, even though it really represents only a portion of the graph. The entire graph would extend beyond the page.

In this course, you will study many sketching techniques. The simplest is point plotting-that is, you plot points until the basic shape of the graph

Graphical approach: $3 x+y=7$
Figure P. 1 seems apparent.

EXAMPLE 1 Sketching a Graph by Point Plotting

To sketch the graph of $y=x^{2}-2$, first construct a table of values. Next, plot the points shown in the table. Then connect the points with a smooth curve, as shown in Figure P.2. This graph is a parabola. It is one of the conics you will study in Chapter 10.

x	-2	-1	0	1	2	3
y	2	-1	-2	-1	2	7

Exploration

Comparing Graphical and Analytic Approaches

Use a graphing utility to graph each equation. In each case, find a viewing window that shows the important characteristics of the graph.
a. $y=x^{3}-3 x^{2}+2 x+5$
b. $y=x^{3}-3 x^{2}+2 x+25$
c. $y=-x^{3}-3 x^{2}+20 x+5$
d. $y=3 x^{3}-40 x^{2}+50 x-45$
e. $y=-(x+12)^{3}$
f. $y=(x-2)(x-4)(x-6)$

A purely graphical approach to this problem would involve a simple "guess, check, and revise" strategy. What types of things do you think an analytic approach might involve? For instance, does the graph have symmetry? Does the graph have turns? If so, where are they? Later, in Chapters 1, 2, and 3, you will study many new analytic tools that will help you analyze graphs of equations.

One disadvantage of point plotting is that to get a good idea about the shape of a graph, you may need to plot many points. With only a few points, you could badly misrepresent the graph. For instance, to sketch the graph of

$$
y=\frac{1}{30} x\left(39-10 x^{2}+x^{4}\right)
$$

you plot five points:

$$
\begin{equation*}
(-3,-3), \quad(-1,-1), \quad(0,0), \quad(1,1), \quad \text { and } \tag{3,3}
\end{equation*}
$$

as shown in Figure P.3(a). From these five points, you might conclude that the graph is a line. This, however, is not correct. By plotting several more points, you can see that the graph is more complicated, as shown in Figure P.3(b).

(a)

(b)

Figure P. 3
TECHNOLOGY Graphing an equation has been made easier by technology. Even with technology, however, it is possible to misrepresent a graph badly. For instance, each graphing utility* screen in Figure P. 4 shows a portion of the graph of

$$
y=x^{3}-x^{2}-25
$$

From Figure P.4(a), you might assume that the graph is a line. From Figure P.4(b), however, you can see that the graph is not a line. So, when you are graphing an equation, either with or without a graphing utility, you must realize that different "viewing windows" can produce very different views of a graph. In choosing a viewing window, your goal is to show a view of the graph that fits well in the context of the problem.

(a)

(b)

Graphing utility screens of $y=x^{3}-x^{2}-25$
Figure P. 4

[^1]
REMARK Some texts

 denote the x-intercept as the x-coordinate of the point $(a, 0)$ rather than the point itself. Unless it is necessary to make a distinction, when the term intercept is used in this text, it will mean either the point or the coordinate.

No x-intercepts One y-intercept
Figure P. 5

TECHNOLOGY

Example 2 uses an analytic approach to find the intercepts. When an analytic approach is not possible, use a graphical approach to find the points at which the graph intersects the axes. Use the trace feature of a graphing utility to approximate the intercepts of the graph of the equation in Example 2. Note that the utility may have a root or zero feature that can find the x-intercepts of a graph. If so, use this feature to find the x-intercepts of the graph of the equation in Example 2.

Intercepts of a Graph

Two types of solution points that are especially useful in graphing an equation are those having zero as their x - or y-coordinate. Such points are called intercepts because they are the points at which the graph intersects the x - or y-axis. The point $(a, 0)$ is an x-intercept of the graph of an equation when it is a solution point of the equation. To find the x-intercepts of a graph, let y be zero and solve the equation for x. The point $(0, b)$ is a \boldsymbol{y}-intercept of the graph of an equation when it is a solution point of the equation. To find the y-intercepts of a graph, let x be zero and solve the equation for y.

It is possible for a graph to have no intercepts, or it might have several. For instance, consider the four graphs shown in Figure P.5.

Three x-intercepts
One y-intercept

One x-intercept Two y-intercepts

No intercepts

EXAMPLE 2 Finding \boldsymbol{x} - and \boldsymbol{y}-Intercepts

Find the x - and y-intercepts of the graph of $y=x^{3}-4 x$.
Solution To find the x-intercepts, let y be zero and solve for x.

$$
\begin{aligned}
x^{3}-4 x & =0 & & \text { Let } y \text { be zero. } \\
x\left(x^{2}-4\right) & =0 & & \text { Factor out common monomial factor. } \\
x(x-2)(x+2) & =0 & & \text { Factor difference of two squares. } \\
x & =0,2, \text { or }-2 & & \text { Solve for } x .
\end{aligned}
$$

This equation has three solutions, so the graph has three x-intercepts:

$$
(0,0), \quad(2,0), \quad \text { and } \quad(-2,0) . \quad x \text {-intercepts }
$$

To find the y-intercepts, let x be zero. Doing this produces $y=0$. So, the y-intercept is $(0,0)$.
y-intercept
(See Figure P.6.)

Intercepts of a graph
Figure P. 6

Figure P. 7

Origin symmetry
Figure P. 8

Symmetry of a Graph

Knowing the symmetry of a graph before attempting to sketch it is useful because you need only half as many points to sketch the graph. The three types of symmetry listed below can be used to help sketch the graphs of equations (see Figure P.7).

1. A graph is symmetric with respect to the \boldsymbol{y}-axis if, whenever (x, y) is a point on the graph, then $(-x, y)$ is also a point on the graph. This means that the portion of the graph to the left of the y-axis is a mirror image of the portion to the right of the y-axis.
2. A graph is symmetric with respect to the \boldsymbol{x}-axis if, whenever (x, y) is a point on the graph, then $(x,-y)$ is also a point on the graph. This means that the portion of the graph below the x-axis is a mirror image of the portion above the x-axis.
3. A graph is symmetric with respect to the origin if, whenever (x, y) is a point on the graph, then $(-x,-y)$ is also a point on the graph. This means that the graph is unchanged by a rotation of 180° about the origin.

Tests for Symmetry

1. The graph of an equation in x and y is symmetric with respect to the y-axis when replacing x by $-x$ yields an equivalent equation.
2. The graph of an equation in x and y is symmetric with respect to the x-axis when replacing y by $-y$ yields an equivalent equation.
3. The graph of an equation in x and y is symmetric with respect to the origin when replacing x by $-x$ and y by $-y$ yields an equivalent equation.

The graph of a polynomial has symmetry with respect to the y-axis when each term has an even exponent (or is a constant). For instance, the graph of

$$
y=2 x^{4}-x^{2}+2
$$

has symmetry with respect to the y-axis. Similarly, the graph of a polynomial has symmetry with respect to the origin when each term has an odd exponent, as illustrated in Example 3.

EXAMPLE 3 Testing for Symmetry

Test the graph of $y=2 x^{3}-x$ for symmetry with respect to (a) the y-axis and (b) the origin.

Solution

a. $y=2 x^{3}-x \quad$ Write original equation.
$y=2(-x)^{3}-(-x) \quad$ Replace x by $-x$.
$y=-2 x^{3}+x \quad$ Simplify. The result is not an equivalent equation.
Replacing x by $-x$ does not yield an equivalent equation, so the graph of $y=2 x^{3}-x$ is not symmetric with respect to the y-axis.
b. $\quad y=2 x^{3}-x$

Write original equation.
$-y=2(-x)^{3}-(-x)$
Replace x by $-x$ and y by $-y$.
$-y=-2 x^{3}+x$
Simplify.
$y=2 x^{3}-x$
Equivalent equation
Replacing x by $-x$ and y by $-y$ yields an equivalent equation, so the graph of $y=2 x^{3}-x$ is symmetric with respect to the origin, as shown in Figure P.8.

Figure P. 9

Two points of intersection
Figure P. 10

EXAMPLE 4 Using Intercepts and Symmetry to Sketch a Graph

D> See LarsonCalculus.com for an interactive version of this type of example.
Sketch the graph of $x-y^{2}=1$.
Solution The graph is symmetric with respect to the x-axis because replacing y by $-y$ yields an equivalent equation.

$$
\begin{aligned}
x-y^{2}=1 & \text { Write original equation. } \\
x-(-y)^{2}=1 & \text { Replace y by }-y \\
x-y^{2}=1 & \text { Equivalent equation }
\end{aligned}
$$

This means that the portion of the graph below the x-axis is a mirror image of the portion above the x-axis. To sketch the graph, first plot the x-intercept and the points above the x-axis. Then reflect in the x-axis to obtain the entire graph, as shown in Figure P.9.

TECHNOLOGY Some graphing utilities are designed so that they most easily graph equations in which y is a function of x (see Section P. 3 for a definition of function). To graph other types of equations, you may need to split the graph into two or more parts or you may need to use a different graphing mode. For instance, one way to graph the equation in Example 4 is to split it into two parts.

$$
\begin{array}{ll}
y_{1}=\sqrt{x-1} & \text { Top portion of graph } \\
y_{2}=-\sqrt{x-1} & \text { Bottom portion of graph }
\end{array}
$$

Points of Intersection

A point of intersection of the graphs of two equations is a point that satisfies both equations. You can find all points of intersection of two graphs by solving their equations simultaneously.

EXAMPLE 5 Finding Points of Intersection

Find all points of intersection of the graphs of

$$
x^{2}-y=3 \quad \text { and } \quad x-y=1
$$

Solution Begin by sketching the graphs of both equations in the same rectangular coordinate system, as shown in Figure P.10. From the figure, it appears that the graphs have two points of intersection. You can find these two points as follows.

$$
\begin{aligned}
y & =x^{2}-3 & & \text { Solve first equation for } y . \\
y & =x-1 & & \text { Solve second equation for } y . \\
x^{2}-3 & =x-1 & & \text { Equate } y \text {-values. } \\
x^{2}-x-2 & =0 & & \text { Write in general form. } \\
(x-2)(x+1) & =0 & & \text { Factor. } \\
x & =2 \text { or }-1 & & \text { Solve for } x .
\end{aligned}
$$

The corresponding values of y are obtained by substituting $x=2$ and $x=-1$ into either of the original equations. Doing this produces two points of intersection:
$(2,1)$ and $(-1,-2)$ Points of intersection

You can check the points of intersection in Example 5 by substituting into both of the original equations or by using the intersect feature of a graphing utility.

Big Ideas of Calculus

You will use the concepts in this chapter throughout your study of calculus. Take the time to fully grasp each concept now so that you are ready to apply that concept later. Be sure to complete all concept exercises in this text-Concept Checks, Exploring Concepts, and Building on Concepts. These exercises are denoted by 0 .

The Mauna Loa Observatory in Hawaii has been measuring the increasing concentration of carbon dioxide in Earth's atmosphere since 1958.

Mathematical Models

Real-life applications of mathematics often use equations as mathematical models. In developing a mathematical model to represent actual data, you should strive for two (often conflicting) goals-accuracy and simplicity. That is, you want the model to be simple enough to be workable, yet accurate enough to produce meaningful results. Appendix G explores these goals more completely.

EXAMPLE 6 Comparing Two Mathematical Models

The Mauna Loa Observatory in Hawaii records the carbon dioxide $\left(\mathrm{CO}_{2}\right)$ concentration y (in parts per million) in Earth's atmosphere. The January readings for various years are shown in Figure P.11. In 1990, these data were used to predict the carbon dioxide level in Earth's atmosphere in 2035, using the quadratic model

$$
y=0.020 t^{2}+0.68 t+316.7 \quad \text { Quadratic model for } 1960-1990 \text { data }
$$

where $t=0$ represents 1960, as shown in Figure P.11(a). The data shown in Figure P.11(b) represent the years 1960 through 2020 and can be modeled by

$$
y=0.013 t^{2}+0.85 t+316.2 \quad \text { Quadratic model for } 1960-2020 \text { data }
$$

where $t=0$ represents 1960 . What was the prediction given by the first model for 1960 through 1990? Given the second model for the 1960 through 2020 data, does this prediction for 2035 seem accurate?

Figure P. 11
Solution To answer the first question, substitute $t=75$ (for 2035) into the first model.

$$
y=0.020(75)^{2}+0.68(75)+316.7=480.2 \quad \text { Model for } 1960-1990 \text { data }
$$

So, according to this model, the carbon dioxide concentration in Earth's atmosphere would reach about 480 parts per million in 2035. Using the model for the 1960-2020 data, the prediction for 2035 is

$$
y=0.013(75)^{2}+0.85(75)+316.2=453.075 . \quad \text { Model for } 1960-2020 \text { data }
$$

So, based on the second model, it appears that the 1990 prediction was too high.

The models in Example 6 were developed using a procedure called least squares regression (see Section 13.9). Note that you can use the regression capabilities of a graphing utility to find a mathematical model (see Exercises 69 and 70).

Concept Check

1. Describe how to find the x - and y-intercepts of the graph of an equation.
2. Explain how to use symmetry to sketch the graph of an equation.

Matching In Exercises 3-6, match the equation with its graph. [The graphs are labeled (a), (b), (c), and (d).]
(a)

(b)

(c)

(d)

3. $y=-\frac{3}{2} x+3$
4. $y=\sqrt{9-x^{2}}$
5. $y=3-x^{2}$
6. $y=x^{3}-x$

Sketching a Graph by Point Plotting In Exercises 7-16, sketch the graph of the equation by point plotting.
7. $y=\frac{1}{2} x+2$
8. $y=5-2 x$
9. $y=4-x^{2}$
10. $y=(x-3)^{2}$
11. $y=|x+1|$
12. $y=|x|-1$
13. $y=\sqrt{x}-6$
14. $y=\sqrt{x+2}$
15. $y=\frac{3}{x}$
16. $y=\frac{1}{x+2}$

Approximating Solution Points In Exercises 17 and 18, use a graphing utility to graph the equation. Move the cursor along the curve to approximate the unknown coordinate of each solution point accurate to two decimal places.
17. $y=\sqrt{5-x}$
18. $y=x^{5}-5 x$
(a) $(2, y)$
(a) $(-0.5, y)$
(b) $(x, 3)$
(b) $(x,-4)$

Finding Intercepts In Exercises 19-28, find any intercepts.
19. $y=2 x-5$
20. $y=4 x^{2}+3$
21. $y=x^{2}+x-2$
22. $y^{2}=x^{3}-4 x$
23. $y=x \sqrt{16-x^{2}}$
24. $y=(x-1) \sqrt{x^{2}+1}$
25. $y=\frac{2-\sqrt{x}}{5 x+1}$
26. $y=\frac{x^{2}+3 x}{(3 x+1)^{2}}$
27. $x^{2} y-x^{2}+4 y=0$
28. $y=2 x-\sqrt{x^{2}+1}$

Testing for Symmetry In Exercises 29-40, test for symmetry with respect to each axis and to the origin.
29. $y=x^{2}-6$
30. $y=9 x-x^{2}$
31. $y^{2}=x^{3}-8 x$
32. $y=x^{3}+x$
33. $x y=4$
34. $x y^{2}=-10$
35. $y=4-\sqrt{x+3}$
36. $x y-\sqrt{4-x^{2}}=0$
37. $y=\frac{x}{x^{2}+1}$
38. $y=\frac{x^{5}}{4-x^{2}}$
39. $y=\left|x^{3}+x\right|$
40. $|y|-x=3$

Using Intercepts and Symmetry to Sketch a Graph In Exercises 41-58, find any intercepts and test for symmetry. Then sketch the graph of the equation.
41. $y=2-3 x$
42. $y=\frac{2}{3} x+1$
43. $y=9-x^{2}$
44. $y=2 x^{2}+x$
45. $y=x^{3}+2$
46. $y=x^{3}-4 x$
47. $y=x \sqrt{x+5}$
48. $y=\sqrt{25-x^{2}}$
49. $x=y^{3}$
50. $x=y^{4}-16$
51. $y=\frac{8}{x}$
52. $y=\frac{10}{x^{2}+1}$
53. $y=6-|x|$
54. $y=|6-x|$
55. $x^{2}+y^{2}=9$
56. $x^{2}+4 y^{2}=4$
57. $3 y^{2}-x=9$
58. $3 x-4 y^{2}=8$

Finding Points of Intersection In Exercises 59-64, find the points of intersection of the graphs of the equations.
59. $x+y=8$
$4 x-y=7$
60. $3 x-2 y=-4$ $4 x+2 y=-10$
61. $x^{2}+y=15$ $-3 x+y=11$
62. $x=3-y^{2}$
$y=x-1$
63. $x^{2}+y^{2}=5$
$x-y=1$
64. $x^{2}+y^{2}=16$

$$
x+2 y=4
$$

The symbol indicates an exercise in which you are instructed to use a graphing utility or a symbolic computer algebra system. The solutions of other exercises may also be facilitated by the use of appropriate technology

Finding Points of Intersection In Exercises 65-68, use a graphing utility to find the points of intersection of the graphs of the equations. Check your results analytically.
65. $y=x^{3}-2 x^{2}+x-1$
66. $y=x^{4}-2 x^{2}+1$
$y=1-x^{2}$
67. $y=\sqrt{x+6}$
$y=\sqrt{-x^{2}-4 x}$
68. $y=-|2 x-3|+6$
$y=6-x$
69. Modeling Data The table shows the gross domestic product, or GDP (in trillions of dollars), for 2012 through 2019. (Source: U.S. Bureau of Economic Analysis)

Year	2012	2013	2014	2015
GDP	16.2	16.8	17.5	18.2

Year	2016	2017	2018	2019
GDP	18.7	19.5	20.6	21.4

(a) Use the regression capabilities of a graphing utility to find a mathematical model of the form $y=a t+b$ for the data. In the model, y represents the GDP (in trillions of dollars) and t represents the year, with $t=12$ corresponding to 2012.
(b) Use a graphing utility to plot the data and graph the model. Compare the data with the model.
(c) Use the model to predict the GDP in the year 2029.

70. Modeling Data

The table shows the numbers of cell phone subscriptions (in billions) worldwide for 2012 through 2019.
(Source: Statista)

Year	2012	2013	2014	2015
Number	6.3	6.7	7.0	7.2
Year 2016 2017 2018 2019 Number 7.5 7.8 7.9 8.3				

(a) Use the regression capabilities of a graphing utility to find a mathematical model of the form $y=a t^{2}+b t+c$ for the data. In the model, y represents the number of subscriptions (in billions) and t represents the year, with $t=12$ corresponding to 2012.
(b) Use a graphing utility to plot the data and graph the model. Compare the data with the model.
(c) Use the model to predict the number of cell phone
 subscriptions worldwide in the year 2029.
71. Break-Even Point Find the sales necessary to break even ($R=C$) when the cost C of producing x units is $C=2.04 x+5600$ and the revenue R from selling x units is $R=3.29 x$.
72. Using Solution Points For what values of k does the graph of $y^{2}=4 k x$ pass through the point?
(a) $(1,1)$
(b) $(2,4)$
(c) $(0,0)$
(d) $(3,3)$

Exploring Concepts

73. Write an equation whose graph has intercepts at $x=-\frac{3}{2}$, $x=4$, and $x=\frac{5}{2}$. (There is more than one correct answer.)
74. A graph is symmetric with respect to the x-axis and to the y-axis. Is the graph also symmetric with respect to the origin? Explain.
75. A graph is symmetric with respect to one axis and to the origin. Is the graph also symmetric with respect to the other axis? Explain.
76.

HOW DO YOU SEE IT? Use the graphs of the two equations to answer the questions below.

(a) What are the intercepts for each equation?
(b) Determine the symmetry for each equation.
(c) Determine the point of intersection of the two equations.

True or False? In Exercises 77-80, determine whether the statement is true or false. If it is false, explain why or give an example that shows it is false.
77. If $(-4,-5)$ is a point on a graph that is symmetric with respect to the x-axis, then $(4,-5)$ is also a point on the graph.
78. If $(-4,-5)$ is a point on a graph that is symmetric with respect to the y-axis, then $(4,-5)$ is also a point on the graph.
79. If $b^{2}-4 a c>0$ and $a \neq 0$, then the graph of
$y=a x^{2}+b x+c$
has two x-intercepts.
80. If $b^{2}-4 a c=0$ and $a \neq 0$, then the graph of
$y=a x^{2}+b x+c$
has only one x-intercept.

[^0]: App Store is a service mark of Apple Inc. Google Play is a trademark of Google Inc.

[^1]: *In this text, the term graphing utility refers to graphing calculators (such as the TI-Nspire and Desmos) and mathematical software (such as Maple and Mathematica).

